

Tuning Load drive on performance dynamometer

517 Administrator Sat, May 29, 2010 [Electronic Equipments](#) 0 3812

Configuring Emerson motor drive for best torque per amp

For the load side of the D&V dynamometer test stands, the Emerson motor drives use an internal operating point selection to choose the operating point at which the motor is run. The motor drive must be tuned in order to achieve the highest torque per amp value. This document summarizes the tuning for the Emerson/Control Techniques Unidrive SP motor drives.

This tuning is not necessary on the DUT motor drive since operating points are selected manually.

Drive Tuning

Parameter	Description	Comments
3.10	Speed Controller Proportional Gain	Speed loop gains control the speed of the load motor. In general, increasing the value of the K_p to increase stability. If K_p is too small the system will not make enough adjustments in response to errors. If K_p is too large the system will become unstable and oscillate with large changes in response to speed error.
3.11	Speed Controller Integral Gain	In general, decrease the value of K_i to increase stability, at the expense of response. If K_i is too low, the system will take too long to reach equilibrium. If K_i is too high the system will make changes quickly, resulting in a ringing behavior with overshoots and undershoots as the system stabilizes.
4.12	Current Demand Filter	Update rate of the PID loop
4.13	Current Controller Proportional Gain	If K_p is too small the system will not make large enough adjustments in response to errors. If K_p is too large the system will become unstable and oscillate with large changes in response to current error.

		changes in response to error.
4.14	Current Controller Integral Gain	If K_i is too low, the system will take long to reach equilibrium. If K_i is too high, the system will make changes quickly resulting in a ringing behavior of overshoots and undershoots as the system stabilizes.
5.25	Stator Inductance	Set this value if you know it.
5.08	Rated Load RPM	Increasing or decreasing this value moves the operating point below base speed. Modify this value in small steps, watch motor torque per amp (torque measured by torque cell / total current). Move this value in the direction that increases torque per amp until you reach a plateau and start to decline.
5.09	Rated Voltage	Increasing rated voltage can allow a larger margin for the PID loops to operate.
5.10	Rated Power Factor	The power factor controls the current required to induce the rotor field. Decreasing power factor puts more energy into the rotor field. Make small changes in the power factor (1 percentage point) in the direction of increasing torque per amp, until the optimal division of torque production between current and rotor excitation current is found, finding the power factor that produces maximum torque per amp.

Online URL:

<https://www.articlediary.com/article/tuning-load-drive-on-performance-dynamometer-517.html>